Friday, October 22, 2010

This week in nanotechnology, October 22, 2010

Scientists have captured the first direct images of magnetic monopoles which were theoretically conceived by the British-Swiss physicist Dirac in the early 1930s who showed that their existence is consistent with the ultimate theory of matter – quantum theory.

For the first time scientists have been able to watch nanoparticles grow from the earliest stages of their formation. Nanoparticles are the foundation of nanotechnology and their performance depends on their structure, composition, and size. Researchers will now be able to develop ways to control conditions under which they are grown. The breakthrough will affect a wide range of applications including solar-cell technology and chemical and biological sensors.
bacterial nanowire

This image shows nanoparticles growing.

Photonic crystals are exotic materials with the ability to guide light beams through confined spaces and could be vital components of low-power computer chips that use light instead of electricity. Cost-effective ways of producing them have proved elusive, but researchers have recently been turning toward a surprising source for help: DNA molecules. The researchers demonstrated that tiny particles of gold and balls of protein known as virus-like particles, both with strands of DNA attached to them, would spontaneously organize themselves into a lattice-like structure. Although the materials themselves aren't useful for making photonic crystals, the distances between the particles are exactly those that would enable a photonic crystal to guide light in the visible spectrum.

Nature has one very big advantage over any human research team: plenty of time. Billions of years, in fact. And over all that time, it has produced some truly amazing materials — using weak building blocks that human engineers have not yet figured out how to use for high-tech applications, and with many properties that humans have yet to find ways to duplicate. But now a number of researchers have begun to unravel these processes at a deep level, not just finding out how the materials behave but what the essential structural and chemical characteristics are that give them their unique properties. In the future, they hope to mimic those structures in ways that produce even better results.

Twisting spires, concentric rings, and gracefully bending petals are a few of the new three-dimensional shapes that University of Michigan engineers can make from carbon nanotubes using a new manufacturing process. The process is called "capillary forming", and it takes advantage of capillary action, the phenomenon at work when liquids seem to defy gravity and travel up a drinking straw of their own accord.
bacterial nanowire

Twisting spires are one of the 3D shapes researchers were able to develop using a new manufacturing process.

University of Virginia chemical engineers have uncovered the key features that control the high reactivity of gold nanoparticles in a process that oxidizes alcohols in water. The research is an important first step in unlocking the potential of using metal catalysts for developing biorenewable chemicals.

Scientists take first step toward electronically interfacing microbes with inorganic materials. The Terminator. The Borg. The Six Million Dollar Man. Science fiction is ripe with biological beings armed with artificial capabilities. In reality, however, the clunky connections between living and non-living worlds often lack a clear channel for communication. Now, scientists with the Berkeley Lab have designed an electrical link to living cells engineered to shuttle electrons across a cell's membrane to an external acceptor along a well-defined path. This direct channel could yield cells that can read and respond to electronic signals, electronics capable of self-replication and repair, or efficiently transfer sunlight into electricity.